По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46

Киргизия (996)312-96-26-47

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Таджикистан (992)427-82-92-69 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Эл. почта seh@nt-rt.ru || Сайт: https://elecson.nt-rt.ru/

CMM-10

МУЛЬТИМЕТРЫ ЦИФРОВЫЕ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Версия 1.12

1	БЕЗОПАСНОСТЬ	4
2	ОПИСАНИЕ	6
2.1	Измерительные разъёмы и режимы измерения	6
2.1.1	Измерительные разъёмы	6
2.1.2		
2.2	Жидкокристаллический дисплей (LCD)	7
2.3	Измерительные провода	7
3	ИЗМЕРЕНИЕ	8
3.1	Измерение напряжения постоянного тока (DC)	8
3.2	Измерение напряжения переменного тока (АС)	
3.3	Измерение постоянного тока (DC)	8
3.4	Измерение переменного тока (АС)	9
3.5	Измерение сопротивления	9
3.6	Измерение целостности цепи	10
3.7	Тестирование диодов	10
3.8	Измерение ёмкости	11
3.9	Измерение частоты и коэффициента заполнения %	11
3.10	Измерение температуры	11
4	ФУНКЦИИ ИЗМЕРЕНИЙ	12
4.1	Автоматический/ручной выбор диапазонов измерений	12
4.2	Режим относительных измерений	12
4.3	Функция HOLD	12
4.4	Подсветка дисплея	12
5	ПИТАНИЕ	12
5.1	Замена элементов питания	12
5.2	Замена предохранителей (плавких вставок)	13
6	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	13
6.1	Основные технические характеристики	13
6.1.1		
6.1.2		
6.1.3		
6.1.4	Переменный ток True RMS (AC)	14
6.1.5	5 Сопротивление	14
6.1.6	Б Ёмкость	14

	1.7 Частота	
6.1	1.8 Коэффициент заполнения	15
6.1	1.9 Температура	15
6.2	Дополнительные характеристики	15
7	комплектация	16
8	ОБСЛУЖИВАНИЕ ПРИБОРА	16
9	УТИЛИЗАЦИЯ	16
10	ПОВЕРКА	17

1 БЕЗОПАСНОСТЬ

Мультиметр СММ-10 разработан для измерения основных электрических величин.

Внимание /

Производитель оставляет за собой право внесения изменений во внешний вид, а также технические характеристики прибора.

Для того чтобы гарантировать правильную работу прибора и требуемую точность результатов измерений, необходимо соблюдать следующие рекомендации:

Внимание 🧥

Перед работой с прибором необходимо изучить данное Руководство, тщательно соблюдать правила защиты, а также рекомендации Изготовителя.

Применение прибора, несоответствующее указаниям Изготовителя, может быть причиной поломки прибора и источником серьёзной опасности для Пользователя.

- Прибором могут пользоваться лица, имеющие соответствующую квалификацию и допуск к данным работам;
- Во время измерений Пользователь не может иметь непосредственного контакта с открытыми частями, доступными для заземления (например, открытые металлические трубы центрального отопления, проводники заземления и т.п.); для обеспечения хорошей изоляции следует использовать соответствующую спецодежду, перчатки, обувь, изолирующие коврики и т. д.;
- Нельзя касаться открытых токоведущих частей, подключенных к электросети;
- Недопустимо применение:
 - о измерителя, повреждённого полностью или частично;
 - о проводов с повреждённой изоляцией;
 - о измерителя, продолжительное время хранившийся в неправильных условиях (например, в сыром или холодном помещении);
- Ремонт прибора может выполняться лишь авторизованным Сервисным Центром.

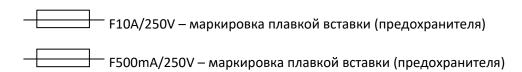
ПРЕДУПРЕЖДЕНИЕ:

Не выполнять измерения во взрывоопасной среде (например, в присутствии горючих газов, паров, пыли и т.д.). Использование измерителя в таких условиях может вызвать искрение и взрыв.

Внимание 🧥

Настоящее изделие относится к универсальным измерительным приборам для измерения и контроля электрических величин (напряжения, силы тока, сопротивления и мощности).

Символы, отображенные на приборе:


Измеритель защищён двойной и усиленной изоляцией.

Данный символ, расположенный рядом с выходом указывает, что в условиях нормальной эксплуатации существует возможность возникновения опасных напряжений.

Перед работой с прибором необходимо изучить данное Руководство, тщательно соблюдать правила защиты, а также рекомендации Изготовителя.

С С Знак соответствия стандартам Европейского союза.

Измеритель, предназначенный для утилизации, следует передать Производителю. В случае самостоятельной утилизации ее следует проводить в соответствии с действующими правовыми нормами.

CAT II 600V — Данная маркировка на оборудовании означает, что оно используется в сетях напряжением до 1000В и устойчиво к максимальному импульсному напряжению в 4000В.

Внимание 🧥		
Предельные значения входного сигнала		
Функция Максимальное входное значение		
V AC или V DC	600V AC/DC RMS	
mA AC/DC	Предохранитель 500mA 250V	
A AC/DC	Предохранитель 10A 250V	
Ω → ••) CAP Hz %	250V AC/DC RMS	

2 ОПИСАНИЕ

2.1 Измерительные разъёмы и режимы измерения

2.1.1 Измерительные разъёмы

- **З** Измерительный разъём **10А.** Измерительный вход для функции измерения тока до 10А.
- **4** Измерительный разъём **СОМ**. Общий измерительный вход для всех измерительных функций.
- **Б** Измерительный разъём **V Ω Temp Hz% mA μA**. Измерительный вход для функции измерения напряжения, сопротивления, температуры, частоты, коэффициента заполнения и тока.

2.1.2 Режимы измерения

- 1 Жидкокристаллический дисплей LCD.
- 2 Поворотный переключатель:
 - Тетр Измерение температуры.
 - Нz% Частота и коэффициент заполнения.

 - $\mathbf{V}^{\overline{z}}$ Напряжение постоянного и переменного тока.
 - **OFF** Выключение измерителя.
 - $10A^{\frac{1}{100}}$ Измерение постоянного и переменного тока до 10A.
 - mA = Измерение постоянного и переменного тока до 400мА.

- µА[™] Измерение постоянного и переменного тока до 400мкА.
- **6 MODE** Выбор дополнительных режимов измерений.
- **7 RANGE** ручной выбор диапазона измерения.
- 8 HOLD 🌞
 - Функция фиксации измеренного значения на дисплее;
 - Подсветка дисплея.
- 9 Клавиша REL измерение относительных величин.
- 10 Отсек для элементов питания.

2.2 Жидкокристаллический дисплей (LCD)

- **»** Режим измерения целостности цепи.
- → Режим тестирование диодов.
- **AC** Переменный ток.
- **DC** Постоянный ток.
- **°С** Градус Цельсия.
- **°F** Градус Фаренгейта.
- **AUTO** Автоматический выбор диапазонов.
- **REL** Относительная величина.
- **HOLD** Зафиксированный результат на экране.

2.3 Измерительные провода

Производитель гарантирует правильность и точность получаемых результатов только при использовании стандартных измерительных проводов.

Внимание 🧥

Использование не соответствующих требованиям измерительных проводов может привести к поражению опасным током либо к появлению дополнительной ошибки измерения.

Следует тщательно изучить содержание данного раздела, т.к. здесь описана методика измерений и принципы интерпретирования результатов.

3 ИЗМЕРЕНИЕ

3.1 Измерение напряжения постоянного тока (DC)

Внимание 🧥

Не проводите измерения напряжения постоянного тока в момент включения или выключения электродвигателя, или цепи. Возможно образование импульса высокого напряжения, что может привести к выходу из строя измерителя.

Порядок проведения измерений напряжения постоянного тока:

- Нажатием клавиши **MODE** установите измеряемое напряжение постоянного тока **DC**;
- В случае необходимости клавишей RANGE вручную установить диапазон измерений;
- Подключить чёрный измерительный провод к разъёму **СОМ** 4 и красный измерительный провод к разъёму **V** 5 ;
- Коснуться концами измерительных проводов контактов измеряемого контура или компонента;
- Считать результат измерения с дисплея.

3.2 Измерение напряжения переменного тока (АС)

Внимание 🧥

Не проводите измерения напряжения переменного тока в момент включения или выключения электродвигателя, или цепи. Возможно образование импульса высокого напряжения, что может привести к выходу из строя измерителя.

Порядок проведения измерений напряжения переменного тока:

- Установить поворотный переключатель в положение V ≅;
- Нажатием клавиши **MODE** установите измеряемое напряжение переменного тока **AC**;
- В случае необходимости клавишей **RANGE** вручную установить диапазон измерений;
- Подключить чёрный измерительный провод к разъёму **СОМ** 4 и красный измерительный провод к разъёму **V** 5 ;
- Коснуться концами измерительных проводов контактов измеряемого контура или компонента;
- Считать результат измерения с дисплея.

3.3 Измерение постоянного тока (DC)

Внимание 🧥

Не проводить измерения тока 10A в течение более 30 секунд. Не соблюдение данного правила может привести к выходу из строя измерителя и/или поражению опасным током.

Порядок проведения измерений постоянного тока:

- Подключить чёрный измерительный провод к разъёму СОМ 4;
- При измерении тока в диапазоне до 4000 μ A, установить поворотный переключатель в положение μ A Ξ и подключить красный измерительный провод к разъёму μ A $\boxed{5}$;
- При измерении тока в диапазоне до 400мА, установить поворотный переключатель в положение **mA** ≡ и подключить красный измерительный провод к разъёму **mA** 5;
- При измерении тока в диапазоне до 10A, установить поворотный переключатель в положение 10A ≅ и подключить красный измерительный провод к разъёму 10A 3;
- Клавишей **MODE** установить режим измерения постоянного тока. На дисплее отобразится символ **DC**;
- Отключить питание от объекта измерения. Подключить концы измерительных проводов к контактам измеряемого контура или компонента;
- Подключить питание к объекту измерения;
- Считать результат измерения с дисплея.

3.4 Измерение переменного тока (АС)

Внимание 🧥

Не проводить измерения тока 10A в течение более 30 секунд. Не соблюдение данного правила может привести к выходу из строя измерителя и/или поражению опасным током.

Порядок проведения измерений:

- Подключить чёрный измерительный провод к разъёму СОМ 4;
- При измерении тока в диапазоне до 400мА, установить поворотный переключатель в положение mA ≅ и подключить красный измерительный провод к разъёму mA 5;
- При измерении тока в диапазоне до 10A, установить поворотный переключатель в положение **10A** ≅ и подключить красный измерительный провод к разъёму **10A** 3;
- Клавишей **MODE** установить режим измерения переменного тока. На дисплее отобразится символ **AC**;
- Отключить питание от объекта измерения. Подключить концы измерительных проводов к контактам измеряемого контура или компонента;
- Подключить питание к объекту измерения;
- Считать результат измерения с дисплея.

3.5 Измерение сопротивления

Внимание 🧥

Не проводите измерения на объектах под напряжением.

Порядок проведения измерений сопротивления:

• Установить поворотный переключатель в положение $\Omega \nrightarrow \bullet \emptyset$ CAP;

- Подключить чёрный измерительный провод к разъёму **COM** $\boxed{4}$ и красный измерительный провод к разъёму Ω $\boxed{5}$;
- Клавишей **MODE** установить режим измерения сопротивления. На дисплее отобразятся символы Ω ;
- Коснуться концами измерительных проводов контактов измеряемого контура или компонента. Рекомендуется отсоединять измеряемую часть объекта, чтобы остальные контуры не вносили своего влияния в результат измерения;
- Считать результат измерения с дисплея.

3.6 Измерение целостности цепи

Внимание 🧥

Не проводите измерения на объектах под напряжением.

Порядок проведения измерений целостности цепи:

- Установить поворотный переключатель в положение Ω → → САР;
- Подключить чёрный измерительный провод к разъёму **COM** 4 и красный измерительный провод к разъёму Ω 5 ;
- Клавишей **MODE** установить режим измерения целостности цепи. На дисплее отобразятся символы **•**) и Ω ;
- Коснуться концами измерительных проводов контактов измеряемого контура или компонента;
- Если сопротивление \cong 150 Ω появится звуковой сигнал. Если цепь разомкнута, отобразится символ **OL**.

3.7 Тестирование диодов

Внимание 🧥

Не проводите измерения на объектах под напряжением.

Порядок проведения тестирования диодов:

- Подключить чёрный измерительный провод к разъёму **СОМ** 4 и красный измерительный провод к разъёму **V** 5 ;
- Установить поворотный переключатель в положение Ω → → → CAP;
- Используя клавишу MODE установить режим тестирования диодов. На дисплее отобразятся символы → и V;
- Коснуться концами измерительных проводов выводов диода;
- Состояние диода можно оценить по следующим параметрам:
 - На дисплее отображается значение напряжение в пределах 0,400-0,900В. При обратном подключении (обратная полярность) на дисплее отображается ОL – диод исправен;
 - о При обоих способах подключения отображается **OL**. Диод закрыт;
 - о При обоих способах подключения отображается очень маленькие значения либо «**0**», диод короткозамкнут.

3.8 Измерение ёмкости

Внимание 🧥

Не проводите измерения на объектах под напряжением. Конденсаторы должны быть разряжены.

Порядок проведения измерений ёмкости:

- Установить поворотный переключатель в положение Ω→ → → САР;
- Подключить чёрный измерительный провод к разъёму **СОМ** 4 и красный измерительный провод к разъёму **V** 5 ;
- Клавишей **MODE** установить режим измерения ёмкости. На дисплее отобразится символ **F**;
- Коснуться концами измерительных проводов выводов конденсатора;
- Считать результат измерения с дисплея.

3.9 Измерение частоты и коэффициента заполнения %

Порядок проведения измерений частоты и коэффициента заполнения:

- Подключить чёрный измерительный провод к разъёму **СОМ** 4 и красный измерительный провод к разъёму **Hz%** 5 ;
- Установить поворотный переключатель в положение Hz%;
- Коснуться концами измерительных проводов контактов измеряемого контура;
- Считать результат измерения частоты с дисплея;
- Используя клавишу **MODE** выбрать %;
- Считать результат измерения коэффициента заполнения с дисплея.

3.10 Измерение температуры

Порядок проведения измерений температуры:

- Установить поворотный переключатель в положение **Temp**;
- Подключить температурный датчик к разъёмам **COM (+) 4** и **Temp (-) 5** , соблюдая полярность;
- Коснуться концом температурного датчика объекта измерения. Удерживать до стабилизации результата на экране измерителя (около 30 секунд);
- Считать результат измерения с дисплея;
- Выбор единицы измерения °F/°C осуществляется механическим переключателем, расположенным под элементом питания.

Внимание 🧥

Для предотвращения поражения электрическим током отключите термопару перед изменением режима измерения.

4 ФУНКЦИИ ИЗМЕРЕНИЙ

4.1 Автоматический/ручной выбор диапазонов измерений

При включении измерителя он переходит в режим автоматического выбора измерительного диапазона, что позволит провести измерения с максимальной точностью. В приборе также предусмотрен режим ручного выбора диапазонов измерения. Для этого необходимо:

- Нажать клавишу **RANGE**. На дисплее погаснет символ **AUTO**.
- Нажатием клавиши **RANGE** выберите нужный измерительный диапазон.
- Для возврата в автоматический режим выбора измерительного диапазона, нажмите клавишу **RANGE** и удерживайте её около 2 секунд.

4.2 Режим относительных измерений

Режим относительных измерений позволяет проводить измерения относительно сохранённой величины. Результатом измерения является разность между сохранённой величиной и измеренной.

Порядок проведения измерений:

- Нажать клавишу **REL** для сохранения измеренного результата в качестве относительной величины. На дисплее отобразится индикатор **REL**;
- При дальнейшем измерении на дисплее отобразится разница значений между относительной величиной и измеренным значением;
- Считать результат измерения с дисплея;
- Для выхода из режима относительных измерений, нажмите клавишу REL.

4.3 Функция HOLD

Для фиксации результата измерения на дисплее, нажмите клавишу **HOLD** . Активация данной функции будет обозначена индикатором **HOLD** на дисплее измерителя. Для возврата в режим измерения, нажмите повторно клавишу **HOLD** . Соответствующий индикатор на дисплее погаснет.

4.4 Подсветка дисплея

Для активации или отключения подсветки дисплея нажмите и удерживайте около 1 секунды клавишу **HOLD ☀**.

5 ПИТАНИЕ

5.1 Замена элементов питания

Питание измерителя CMM-10 осуществляется от батарейки 9В типа 6LR61. Желательно использовать щелочные (alkaline) элементы питания.

Внимание 🧥

Не отсоединение проводов от измерительных гнёзд во время замены элементов питания может привести к поражению опасным током.

Порядок замены элементов питания:

- Отключить от измерительных гнёзд провода и установить поворотный переключатель в позицию **OFF**;
- Выкрутить 2 винта крышки отсека элементов питания;
- Снять крышку;
- Вынуть разрядившийся элемент питания и установить новый;
- Установить снятую крышку и закрутить крепёжные винты.

5.2 Замена предохранителей (плавких вставок)

Пользователь имеет возможность самостоятельно заменить предохранители. В СММ-10 используются два предохранителя F0,5A/250B и F10A/250B.

Порядок замены:

- Отключить все измерительные провода от соответствующих разъёмов и выключить измеритель;
- Отсоединить отсек элементов питания, открутив два винта;
- Замените необходимые предохранители;
- Соберите измеритель в обратном порядке.

Не допускается замена перегоревшего предохранителя предохранителем другого номинала или самодельной перемычкой.

Остальной ремонт измерителей осуществляется после квалифицированной диагностики в Сервисном Центре.

6 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

6.1 Основные технические характеристики

Сокращение «и.в.» в определении основной погрешности обозначает «измеренная величина».

Сокращение «е.м.р.» в определении основной погрешности обозначает «единица младшего разряда».

6.1.1 Напряжение постоянного тока (DC)

Диапазон	Разрешение	Погрешность
400,0 мВ	0,1 mB	± (0,5% и.в. + 2 е.м.р.)
4,000 B	0,001 B	
40,00 B	0,01 B	± (1,2% и.в. + 2 е.м.р.)
400,0 B	0,1 B	
600 B	1 B	± (1,5% и.в. + 2 е.м.р.)

• Входное сопротивление 7,8 МОм

6.1.2 Напряжение переменного тока True RMS (AC)

Диапазон	Разрешение	Погрешность
400,0 мВ	0,1 mB	± (1,5% и.в. + 70 е.м.р.)
4,000 B	0,001 B	± (1,2% и.в. + 3 е.м.р.)
40,00 B	0,01 B	± (1,5% и.в. + 3 е.м.р.)
400,0 B	0,1 B	⊥ (1,5% и.в. + 3 е.м.р.)
600 B	1 B	± (2% и.в. + 4 е.м.р.)

- Частотный диапазон от 50...400 Гц
- Входное сопротивление 7,8 МОм

6.1.3 Постоянный ток (DC)

Диапазон	Разрешение	Погрешность
400,0 mkA	0,1 mkA	± (1% и.в. + 3 е.м.р.)
4000 MKA	1 мкА	
40,00 MA	0,01 MA	± (1,5% и.в. + 3 е.м.р.)
400,0 MA	0,1 mA	
4,000 A	0,001 A	±/2 5% up + 5 o up)
10,00 A	0,01 A	± (2,5% и.в. + 5 е.м.р.)

6.1.4 Переменный ток True RMS (AC)

Диапазон	Разрешение	Погрешность
400,0 MKA	0,1 mkA	± (1,5% и.в. + 5 е.м.р.)
4000 MKA	1 мкА	
40,00 MA	0,01 MA	\pm (1,8% и.в. + 5 е.м.р.)
400,0 mA	0,1 mA	
4,000 A	0,001 A	± (3% и.в. + 7 е.м.р.)
10,000 A	0,01 A	

[•] Частотный диапазон от 50...400 Гц

6.1.5 Сопротивление

Диапазон	Разрешение	Погрешность
400,0 Ом	0,1 Om	± (1,2% и.в. + 4 е.м.р.)
4,000 кОм	0,001 kOm	± (1% и.в. + 2 е.м.р.)
40,00 кОм	0,01 кОм	
400,0 кОм	0,1 кОм	± (1,2% и.в. + 2 е.м.р.)
4,000 МОм	0,001 МОм	
40,00 МОм	0,01 MOm	± (2% и.в. + 3 е.м.р.)

6.1.6 Ёмкость

Диапазон	Разрешение	Погрешность
40,00 нФ	0,01 нФ	± (5% и.в. + 7 е.м.р.)

400,0 нФ	0,1 нФ	
4,000 мкФ	0,001 мкФ	\pm (3% и.в. + 5 е.м.р.)
40,00 мкФ	0,01 мкФ	
100,0 мкФ	0,1 мкФ	± (5% и.в. + 5 е.м.р.)

6.1.7 Частота

Диапазон	Разрешение	Погрешность
5,000 Гц	0,001 Гц	± (1,5% и.в. + 5 е.м.р.)
50,00 Гц	0,01 Гц	⊥ (1,5% и.в. + 5 е.м.р.)
500,0 Гц	0,1 Гц	
5,000 кГц	0,001 кГц	± (1,2% и.в. + 3 е.м.р.)
50,00 кГц	0,01 кГц	⊥ (1,2% и.в. + 3 е.м.р.)
500,0 кГц	0,01 кГц	
5,000 МГц	0,001 МГц	± (1,5% и.в. + 4 е.м.р.)
10,00 МГц	0,01 МГц	

[•] Чувствительность: ≥ 8 В RMS

6.1.8 Коэффициент заполнения

Диапазон	Разрешение	Погрешность
0,199,0%	0,1%	± (1,2% и.в. + 2 е.м.р.)

• Чувствительность: ≥ 8 В RMS

• Длительность импульса: 100 µс – 100 мс,

• Частота: 5 Гц до 150 кГц

6.1.9 Температура

Диапазон	Разрешение	Погрешность
-20760 °C	1 °C	± (3% и.в. + 5°C)
-41400 °F	1°F	± (3% и.в. + 9°F)

^{*} погрешность термопары не учитывается

6.2 Дополнительные характеристики

Питание			
Питание измерителя	Батарея 9 В типа 6LR61		
Категория электробезопасности	CAT II/600 B		

Условия окружающей среды и другие технические данные			
Диапазон рабочих температур 050 °С при относительной влажности менее 70%			
Диапазон температур при хранении	-2060 °C при относительной влажности менее 80%		
Степень защиты, согласно ГОСТ 14254-2015 (IEC 60529:2013)	IP40		
Нормальные условия для поверки	Температура окружающей среды: 23 °C \pm 2 °C Влажность: 4060 %		
Размеры	138 x 68 x 37 mm		

Macca	210 гр.
Дисплей	ЖКИ 5000 знаков
Высота над уровнем моря	< 2000 M
Тестирование диодов	I = 0,3 mA, U ₀ = 1, 5B DC
Целостность цепи	I<0,3мА, звуковая индикация R < 50 Ом
Индикация превышения диапазона	OL индикатор
Входное сопротивление	7,8 MOm (AC/DC)
режим mA, μA: 0,5 A/250 V керамический FAST режим A: 10 A/250 V керамический FAST	
Время бездействия до самоотключения	30 мин.
Соответствие требованиям ГОСТ	ГОСТ IEC 61010-1-2014 ГОСТ IEC 61010-2-032-2014

7 КОМПЛЕКТАЦИЯ

Наименование	Количество	Индекс
Мультиметр цифровой СММ-10	1 шт.	WMRUCMM10
Руководство по эксплуатации/Паспорт	1/1 шт.	
Комплект измерительных проводов СМР	1 шт.	WAPRZCMP1
Термопара	1 шт.	#
Элемент питания алкалиновый 9V 6LR61	1 шт.	#

8 ОБСЛУЖИВАНИЕ ПРИБОРА

В случае нарушения правил эксплуатации оборудования, установленных Изготовителем, может ухудшиться защита, применяемая в данном приборе.

Корпус измерителя можно чистить мягкой влажной фланелью. Нельзя использовать растворители, абразивные чистящие средства (порошки, пасты и так далее).

Электронная схема измерителя не нуждается в чистке, за исключением гнёзд подключения измерительных проводов.

Измеритель, упакованный в потребительскую и транспортную тару, может транспортироваться любым видом транспорта на любые расстояния.

Допускается чистка гнёзд подключения измерительных проводов с использованием безворсистых тампонов.

Ремонт прибора осуществляется только в авторизованном Сервисном Центре.

9 УТИЛИЗАЦИЯ

Измеритель, предназначенный для утилизации, следует передать Производителю. В случае самостоятельной утилизации её следует проводить в соответствии с действующими правовыми нормами.

10 ПОВЕРКА

Мультиметр СММ-10 в соответствии с Федеральным законом РФ №102 «Об обеспечении единства измерений» ст.13, подлежит поверке.

Межповерочный интервал – 1 год.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46 Киргизия (996)312-96-26-47 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Казахстан (772)734-952-31 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Таджикистан (992)427-82-92-69

Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93